Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells.

نویسندگان

  • Xiaohua Jiang
  • Fan Yang
  • Eugen Brailoiu
  • Hieronim Jakubowski
  • Nae J Dun
  • Andrew I Schafer
  • Xiaofeng Yang
  • William Durante
  • Hong Wang
چکیده

OBJECTIVE We previously reported that homocysteine (Hcy) inhibits endothelial cell (EC) growth and promotes vascular smooth muscle cell (VSMC) proliferation. This study characterized and directly compared Hcy transport in cultured human aortic ECs (HAECs) and smooth muscle cells (HASMCs). METHODS AND RESULTS Hcy (10 micromol/L) was transported into both cell types in a time-dependent fashion but was approximately 4-fold greater in HASMCs, and is nonstereoenantiomer specific. Hcy transport in HAECs had a Michaelis-Menten constant (Km) of 39 micromol/L and a maximal transport velocity (Vmax) of 873 pmol/mg protein/min. In contrast, Hcy transport in HASMCs had a lower affinity (Km = 106 micromol/L) but a higher transport capacity (Vmax = 4192 pmol/mg protein/min). Competition studies revealed that the small neutral amino acids tyrosine, cysteine, glycine, serine, alanine, methionine, and leucine inhibited Hcy uptake in both cell types, but the inhibition was greater for tyrosine, serine, glycine, and alanine in HAECs. Sodium-depletion reduced Hcy transport to 16% in HAECs and 56% in HASMCs. Increases in pH from 6.5 to 8.2 or lysosomal inhibitors blocked Hcy uptake only in HAECs. In addition, Hcy shares carrier systems with cysteine, in a preferable order of alanine-serine-cysteine (ASC) > aspartate and glutamate (X(AG)) = large branched-chain neutral amino acids (L) transporter systems in HAECs and ASC > L > X(AG) in HASMCs. The sodium-dependent system ASC plays a predominant role for Hcy transport in vascular cells. CONCLUSIONS Transport system ASC predominantly mediates Hcy transport in EC and is lysosomal dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلول‌های عضله‌ی صاف دیواره‌ی رگ‌ها

Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...

متن کامل

بررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)

Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...

متن کامل

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis.

Plasma homocysteine levels are elevated in 20-30% of all patients with premature atherosclerosis. Although elevated homocysteine levels have been recognized as an independent risk factor for myocardial infarction and stroke, the mechanism by which these elevated levels cause atherosclerosis is unknown. To understand the role of homocysteine in the pathogenesis of atherosclerosis, we examined th...

متن کامل

Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells.

While transport processes for amino acids and glucose have long been known to be expressed in the luminal and abluminal membranes of the endothelium comprising the blood-brain and blood-retinal barriers, it is only within the last decades that endothelial and smooth muscle cells derived from peripheral vascular beds have been recognized to rapidly transport and metabolize these nutrients. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2007